15,369 research outputs found

    State Public Nuisance Claims and Climate Change Adaptation

    Get PDF
    This Article explores the potential for state public nuisance claims to facilitate adaptation, resource protection, and other climate change responses by coastal communities in California. The California public nuisance actions represent just the latest chapter in efforts to spur responses to climate change and attribute responsibility for climate change through the common law. Part II of this Article describes the California public nuisance lawsuits and situates them in the context of common law actions directed against climate change. Part III considers the preliminary defenses that defendants have raised and could raise in the California public nuisance lawsuits, including the existence of state common law in this context, separation of powers and the political question doctrine, displacement and preemption, and standing. Part IV considers the potential merits of the plaintiffs’ public nuisance claims under California law

    Dipole and monopole modes in the Bose-Hubbard model in a trap

    Full text link
    The lowest-lying collective modes of a trapped Bose gas in an optical lattice are studied in the Bose-Hubbard model. An exact diagonalization of the Hamiltonian is performed in a one-dimensional five-particle system in order to find the lowest few eigenstates. Dipole and breathing character of the eigenstates is confirmed in the limit where the tunneling dominates the dynamics, but under Mott-like conditions the excitations do not correspond to oscillatory modes.Comment: 19 pages, 11 figures; submitted to Phys. Rev.

    Metrology of EUV Masks by EUV-Scatterometry and Finite Element Analysis

    Full text link
    Extreme ultraviolet (EUV) lithography is seen as a main candidate for production of future generation computer technology. Due to the short wavelength of EUV light (around 13 nm) novel reflective masks have to be used in the production process. A prerequisite to meet the high quality requirements for these EUV masks is a simple and accurate method for absorber pattern profile characterization. In our previous work we demonstrated that the Finite Element Method (FEM) is very well suited for the simulation of EUV scatterometry and can be used to reconstruct EUV mask profiles from experimental scatterometric data. In this contribution we apply an indirect metrology method to periodic EUV line masks with different critical dimensions (140 nm and 540 nm) over a large range of duty cycles (1:2, ..., 1:20). We quantitatively compare the reconstructed absorber pattern parameters to values obtained from direct AFM and CD-SEM measurements. We analyze the reliability of the reconstruction for the given experimental data. For the CD of the absorber lines, the comparison shows agreement of the order of 1nm. Furthermore we discuss special numerical techniques like domain decomposition algorithms and high order finite elements and their importance for fast and accurate solution of the inverse problem.Comment: Photomask Japan 2008 / Photomask and Next-Generation Lithography Mask Technology X

    Correlation of circular differential optical absorption with geometric chirality in plasmonic meta-atoms

    Get PDF
    We report a strong correlation between the calculated broadband circular differential optical absorption (CDOA) and the geometric chirality of plasmonic meta-atoms with two-dimensional chirality. We investigate this correlation using three common gold meta-atom geometries: L-shapes, triangles, and nanorod dimers, over a broad range of geometric parameters. We show that this correlation holds for both contiguous plasmonic meta-atoms and non-contiguous structures which support plasmonic coupling effects. A potential application for this correlation is the rapid optimization of plasmonic nanostructure for maximum broadband CDOA

    The isotropic correlation function of plane figures: the triangle case

    Full text link
    The knowledge of the isotropic correlation function of a plane figure is useful to determine the correlation function of the cylinders having the plane figure as right-section and a given height as well as to analyze the out of plane intensity collected in grazing incidence small-angle scattering from a film formed by a particulate collection of these cylinders. The correlation function of plane polygons can always be determined in closed algebraic form. Here we report its analytic expression for the case of a triangle. The expressions take four different forms that depend on the relative order among the sides and the heights of the triangle.Comment: 11 pages, 2 figure

    Benchmark of FEM, Waveguide and FDTD Algorithms for Rigorous Mask Simulation

    Full text link
    An extremely fast time-harmonic finite element solver developed for the transmission analysis of photonic crystals was applied to mask simulation problems. The applicability was proven by examining a set of typical problems and by a benchmarking against two established methods (FDTD and a differential method) and an analytical example. The new finite element approach was up to 100 times faster than the competing approaches for moderate target accuracies, and it was the only method which allowed to reach high target accuracies.Comment: 12 pages, 8 figures (see original publication for images with a better resolution

    Rigorous Simulation of 3D Masks

    Get PDF
    We perform 3D lithography simulations by using a finite-element solver. To proof applicability to real 3D problems we investigate DUV light propagation through a structure of size 9 microns times 4 microns times 65 nm. On this relatively large computational domain we perform rigorous computations (No Hopkins) taking into account a grid of 11 times 21 source points with two polarization directions each. We obtain well converged results with an accuracy of the diffraction orders of about one percent. The results compare well to experimental aerial imaging results. We further investigate the convergence of 3D solutions towards quasi-exact results obtained with different methods.Comment: 8 pages, 5 figures (see original publication for images with a better resolution
    • …
    corecore